

RIDE: Transit in our Neighborhood

Lesson 2: Interactive Roller Coaster

Answer the questions using the simulation, background information, and key terms as references.

a.	At which poi	nt on the interac	ctive roller coaster	is the potential	energy highest?	Why?	
b.	At which poin	nt on the interact	tive roller coaster i	s the potential e	nergy highest? \	Why?	
C.	At which poir	nt on the interac	tive roller coaster i	s the acceleration	on the highest? \	Why?	
			nimation of a roller t are the cars doing				nmount of potential and reases in size?

e. The roller coaster in this interactive is a model. In real life, not all of the potential energy of the coaster cars is converted to kinetic energy and back again; some mechanical energy is converted to thermal energy. Describe how mechanical energy gets converted to thermal energy along the track. How does this conversion affect the potential energy and kinetic energy during the ride?